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Simple approach for the bound-state energy spectrum of the generalized exponential-cosine
Coulomb potential
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Based on the series expansion formalism, a relatively simple approach is proposed to solve the eigenvalues
problems with partially screened and screened exponential-cosine Coulomb potentials. This approach is used to
derive solutions to the Schro¨dinger equation with the two forms of potentials. The eigenenergies are explicitly
deduced from solving the obtained corresponding polynomial equations. For illustration, high accuracy results
have been obtained in the entire range of parameter values of these potential forms, with no constraints or
adjustable constants. The present approach compares well, with existing methods, the results of which are
precisely recovered as particular cases and does allow solutions to eigenvalues problems with any combination
of potential parameters.
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I. INTRODUCTION

It is well known that the generalized exponentia
cosine screened Coulomb~ECSC! potential V(r )
5exp(2mr)cos(lr)/r belongs to a wide class of model po
tentials used in different areas of physics. Theoretical inv
tigations of the ECSC potential have been performed thro
various numerical and analytical approaches for the dete
nation of the energy eigenvalues and the corresponding w
functions @1–8#. The particular casem5l of this type of
potential has been treated by perturbation theory withl as
perturbation parameter along with a constraint on the sca
parameter@1–4#. The accuracy obtained is up to the first fiv
decimals. For the same case (m5l), the large-N expansion
technique was applied to obtain the bound-state energy s
trum @6,7#. A power series-Hill determinant method has be
developed by Killingbeck@7# to calculate the energy eigen
values for some particular values ofm andl. An adjustable
constant and a scaling factor have been introduced. A
energy value is required in the calculations. Recently, Ix
et al. @8# have presented a procedure for numerical solut
of the eigenvalues problems with the distorted Coulomb
tential. In that work, the partially screening exponenti
cosine~PSEC! potential is assumed to describe two regio
corresponding to two different electric charges, which
located around the origin and at the asymtotic limit, resp
tively. In this procedure the knowledge of the behavior
V(r ) is not required. However, it is well known that som
physical problems are mainly concerned by the short
intermediate distances~e.g., potential models for hadro
physics!. Moreover, the success of direct numerical integ
tion methods depends on the quality of initial guesses of
trial eigenvalues and boundary conditions.

In the present work, a simple approach is proposed
determine highly accurate eigenvalues of the general
exponential-cosine Coulomb potentials. The series expan
formalism is used to derive analytical solutions to the Sch¨-
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dinger equation for two forms of the considered potent
Once these solutions have been obtained, the correspon
polynomial equations will allow the determination of the s
quences of energy levels for a given set of potential para
eters, and fixed angular momentuml, without resorting to
extensive numerical calculations. Thus, the uncertainties
lated to the use of approximate methods and the singula
problems are avoided. The proposed approach, which
quires neither adjustable constants nor starting trial ene
value, can be extended to potentials of the same form oc
ring in nuclear physics and condensed matter.

After the Introduction, in Sec. II, recursion relations a
derived in order to construct solutions to the Schro¨dinger
equation with two forms of the ECSC potential: the gener
ized exponential-cosine screened Coulomb potential and
partially screening exponential-cosine Coulomb potential
Sec. III, the present work is illustrated by calculations of t
eigenenergies in a whole range of parameters values of
considered potential forms. Some numerical results are
sented and compared with previous computations that w
performed by other methods.

II. SERIES SOLUTION FOR THE POTENTIALS

A. The generalized exponential-cosine screened Coulomb
potential

The radial part of the time-independent Schro¨dinger equa-
tion with ECSC potential and centrifugal term can be writt
in the following form ~atomic units are used throughout!:

c9~r!1F2«22
l ~ l 11!

r2
12b

e2rcos~kr!

r Gc~r!50,

~1!

where«5A22E/m, k5l/m, andb5a/m, E being the ei-
genvalue to be looked for~only the bound states are consi
ered!. Here m and l are the usual screening parameters
©2003 The American Physical Society01-1
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TABLE I. Energy eigenvalues (2E, in a.u.!, for l 50 and different values of screening parameters (m,l) of ECSC potential. The numbe
of terms used isN514. Only six decimals are quoted here. The underlined values, located on the first diagonal of the table, corres
the results obtained for the particular casem5l by other methods@1–7#.

m\l 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2

0.01 0.490001 0.480224 0.470591 0.461100 0.451748 0.442533 0.433453 0.424504 0.415686 0.406996 0.3
0.02 0.489781 0.480008 0.470379 0.460892 0.451544 0.442333 0.433256 0.424311 0.415496 0.406810 0.3
0.03 0.489413 0.479648 0.4700260.460546 0.451204 0.441999 0.432928 0.423989 0.415180 0.406499 0.32
0.04 0.488900 0.479144 0.469532 0.4600610.450728 0.441532 0.432470 0.423539 0.414738 0.406065 0.325
0.05 0.488240 0.478497 0.468898 0.459438 0.4501170.440932 0.431881 0.422961 0.414170 0.405507 0.3254
0.06 0.487436 0.477708 0.468123 0.458679 0.449372 0.4402010.431162 0.422255 0.413477 0.404827 0.3249
0.07 0.486487 0.476778 0.467210 0.457783 0.448492 0.439337 0.4303150.421423 0.412660 0.404023 0.32425
0.08 0.485395 0.475706 0.466159 0.456751 0.447480 0.438343 0.429338 0.4204640.411718 0.403098 0.323480
0.09 0.484160 0.474495 0.464971 0.455585 0.446335 0.437218 0.428234 0.419380 0.4106530.402052 0.322600
0.1 0.482785 0.473145 0.463646 0.454284 0.445058 0.435965 0.427003 0.418170 0.409465 0.4008850.321616
0.2 0.461597 0.452339 0.443211 0.434211 0.425337 0.416588 0.407962 0.399457 0.391071 0.382804 0
q.
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the potential anda is a constant. The ECSC potential in E
~1! can be represented as an infinite series of the form

V~r!52b (
p50

`

(
q50

p

gp22qhqrp21, ~2!

where g and h are the series expansion coefficients of t
exponential and cosine functions, respectively. The objec
now is to construct an analytical solution of Eq.~1! with the
potential form~2!. This solution is sought in the form

c~r!5rse2«rf~r!, ~3!

wheres is determined in such a way that the solution goes
zero at the origin. Substituting Eqs.~3! and ~2! into Eq. ~1!,
we obtain

@s~s21!2 l ~ l 11!#f1~2sf822«sf!r1~f922«f8!r2

12bf (
p50

`

(
q50

p

gp22qhqrp1150, ~4!

where the variabler of the functionf is omitted for sim-
plicity. The function f(r) can be represented by a seri
expansion whose coefficients will be determined by the s
dard procedure~see, e.g., Ref.@9#!
01770
e

o

n-

f~r!5 (
k50

`

akr
k. ~5!

The expansion coefficientsak and the basis functionsf(r)
are real. Substituting the expansion~5! into Eq. ~4! and
equating the terms of successive powers ofr to zero, we
obtain the following recurrence relation for the coefficien
an ,

an5

~n1 l !«an212b (
p50

n21

(
q50

p

gp22qhqan212q

nS l 1
n11

2 D , n>1.

~6!

So far, we have not introduced any constraint or adjusta
constant in these calculations. Finally an analytical solut
to the Schro¨dinger equation with the generalize
exponential-cosine screened Coulomb potential is obtain

c~r!5r l 11e2«rS a01 (
n51

`

anrnD , a0Þ0. ~7!

The solutionc(r) is function of the angular momentuml,
the bound-state eigenvalueE ~i.e., «, to be calculated! and
the two screening parametersm andl.
e
r

TABLE II. Energy eigenvalues~a.u.! versus the numberN of terms of the polynomial equation for th
ECSC potential. The second column corresponds to the eigenvalue (E520.490 001) displayed in Table I fo
(m,l)5(0.01,0.01). The values in the last line are the results withN550 of Ref.@7#.

N (0.01,0.01)l 50 (0.05,0)l 50 (0.05,0)l 51

8 20.490000987578414 20.45181642236646 20.08046402435766
10 20.490000987578416 20.45181642843260 20.08069564787830
13 20.490000987578417 20.45181642852304 20.08073227047680
14 20.490000987578417 20.45181642852448 20.08073875332339
16 20.490000987578418 20.45181642852449 20.08074036232384
50 20.45181643 20.08074039
1-2
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TABLE III. Energy convergence~a.u.! versus the number of termsN of the polynomial equation and th
value of the variabler for ECSC potential withm50.05,l50 andl 50. In the last column are displayed th
results of the power series–Hill determinant method@7#.

r\N 8 10 14 18 50

5 20.4518164223 20.4518164284 20.4518164285 20.4518164297
10 20.4518164284 20.4518164284 20.4518164285 20.4518164298 20.45181562
15 20.4518164284 20.4518164285 20.4518164285 20.4518164298 20.45181643
20 20.4518164284 20.4518164285 20.4518164285 20.4518164298 20.45181643
1020 20.4518164284 20.4518164285 20.4518164286 20.4518164298 20.45181643
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B. The partially screening exponential-cosine Coulomb
potential

The recurrence relation~6! and the constructed solutio
~7! correspond to the well known form of the ECSC potent
used in Refs.@1–7#. In order to test the reliability of the
proposed approach, it is of interest to consider also the
tially screening exponential-cosine Coulomb potential u
by Ixaru et al. @8#. This is one more motivation for the
present work to make comparison with the most recent av
able numerical results. The PSEC potential is written in
following form ~see Eq.~5.3! in Ref. @8#!:

V~r !522Z0V~r ,m,l!22ZasS 1

r
2V~r ,m,l! D , ~8!

whereZ0 and Zas are the charges corresponding to two a
sumed regions of the potential, for small and large distan
r, respectively. By analogy with the form~2!, the potential
~8! can be represented in the following expansion:

V~r!52hS b(
p50

`

(
q50

p

gp22qhqrp212
1

r D , ~9!

whereh5Zas /m andb5(Zas2Z0)/Zas . The coefficientsg
andh are defined in Eq.~2!. The procedure developed abov
is applied to solve the corresponding equation with Eq.~9!.
For the sake of brevity, we omit the intermediate steps
01770
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calculations and give only the final expression ofan ob-
tained for the PSEC Coulomb potential

an5

@~n1 l !«2h#an211bh (
p50

n21

(
q50

p

gp22qhqan212q

nS l 1
n11

2 D ,

n>1. ~10!

The constructed solution is of the same form as Eq.~7!, but
with an derived in Eq.~10!.

The wave function c(r) and considered potential
strongly converge asr→` (r very large!. The series overn
in Eq. ~7! are infinite but converge very rapidly. To avoid th
drawbacks of the existing methods, presented in the in
duction, it will be adopted in the present work, an approa
based on the fact that, for large values ofr and a given set of
parameters that describe the considered potential, the s
c(r) in Eq. ~7! can be considered as anth degree polyno-
mial equation in«. In general, the problems that arise wh
one uses the power series expansion formalism are relate
the determination of corresponding coefficients. In t
present approach, these problems are avoided due to th
cursive procedure derived for the successive evaluation
the coefficientsan . Knowing that for a polynomial of degree
results

9

TABLE IV. Energy eigenvalues~a.u.! for l 50 and different values of the screening parameters (m,l) of
the PSEC Coulomb potential. The noted down out at the bottom of the table values correspond to the
of Ref. @8# obtained for the particular casem5l50.025~all quoted figures are kept!.

m\l 0.023 0.024 0.025 0.026

0.024 22497.648069565322 22497.648000541650 22497.647928580743 22497.647853682713
2662.648283005093 2622.648007571868 2622.647720419181 2622.647421545352
2275.426432264287 2275.425815023098 2275.425171510940 2275.424501736108

0.025 22497.550141591035 22497.550072570069 22497.550000612079a 22497.549925717022
2622.550571065078 2622.550295671433 2622.550008558031b 2622.549709726477
2275.329080239292 2275.328463176982 2275.327819865708c 2275.327150293829

0.026 22497.452216553854 22497.452147535665 22497.452075580554 2497.45200068844
2622.452870845412 2622.452595489654 2622.452308416614 2622.542009627196
2275.231754460659 2275.231137592236 2275.230494475763 2275.229825105659

a22497.5500006120.
b2622.550008557.
c2275.327819864.
1-3
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n there are alwaysn ~not necessary distinct! roots. In the
present work the polynomial equation is solved by usin
computational procedure based on the well-establis
Jenkins-Traub method@10# which converges very rapidly
The process of finding the successive roots of the polynom
equation, i.e., the eigenvalues, can be achieved by two
sible ways. The first one givesn isolated roots while the
second provides a product of first-degree and second-de
polynomials ~this is in accordance with the fundament
properties of the polynomial algebra!. The same expecte
roots are obtained in both cases with the same numbe
significant digits. This procedure permits, in a simple way
straightforward determination of the energy levels witho
introducing any starting value ofE or bracketed root.

III. COMPUTATIONAL RESULTS

Calculations have been carried out with the generali
ECSC potential for fixed values ofl and screening param
eters (m,l) varying from 0.01 to 0.2. The energy eigenva
ues obtained forl 50 are displayed in Table I where only
decimals are shown. The underlined values, located on
first diagonal of this table, correspond to the particular c
m5l which was treated by other methods in Refs.@1–7#.
High accuracy results, up to sixteen significant figures, h
been obtained with a relatively low number of terms (N
514) of the polynomial equation. To illustrate this precisi
with more digits, in Table II some specific results are p
sented for the casem5l50.01 (E520.490 001) shown in
Table I with only six digits. The casem50.05 andl50 is
not shown in this table. The results obtained in the fram
work of the Hill-determinant method~see the last line of
Table II! require a number ranging from 20 to 50 terms@7#.
On the other hand, we can notice from Table II, that
accuracy increases with increasing of number of terms,
the fact of adding terms provides eigenvalues with more
more precision. This is very convenient in practical calcu
tions since this procedure allows, in principle, the requi
accuracy to be reached. This process is analogous to the
01770
a
d

al
s-

ree

of
a
t

d

he
e

e

-

-

e
.,
d
-
d
ell

known root-polishing technique of the numerical analy
@10#. The process of computation does not require any c
vergence acceleration procedure. Table III shows the en
convergence with respect to the number of terms conside
in the polynomial equation and the values of the variabler
for l 50. In the last column of this table the results obtain
in the framework of the Hill-determinant method by using
terms are listed@7#. In the present approach the first te
significant figures are reached by using five terms only. Fr
mathematical point of view,l does not have to be intege
The eigenvalues obtained for noninteger values ofl are not
shown in this paper. To verify the efficiency of the propos
approach, calculations have been performed for the parti
screening exponential-cosine Coulomb potential~8! with
screening parameters (m,l) varying from 0.023 up to 0.026
for l 50,5 and 10. Some results~for l 50) are presented in
Table IV with about sixteen significant figures. Comparis
is made with the most recent calculations for the particu
casem5l50.025@8#.

In summary, highly accurate eigenvalues for two forms
the generalized exponential-cosine Coulomb potential can
obtained by a relatively simple approach, based on the se
expansion formalism combined with solving of polynomi
equations. The procedure of calculation, which can be
plied to other potentials of similar form, permits, in a simp
way, a straightforward determination of the energy eigenv
ues without introducing any adjustable parameter or c
straint. Singularity problems are avoided. All results pre
ously obtained by other methods are reproduced here
particular cases, with high accuracy. Predictions can be m
for different combinations of potential parameters. The a
vantages of the proposed approach are speed, stability,
accuracy.
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