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Simple approach for the bound-state energy spectrum of the generalized exponential-cosine
Coulomb potential
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Based on the series expansion formalism, a relatively simple approach is proposed to solve the eigenvalues
problems with partially screened and screened exponential-cosine Coulomb potentials. This approach is used to
derive solutions to the Schidnger equation with the two forms of potentials. The eigenenergies are explicitly
deduced from solving the obtained corresponding polynomial equations. For illustration, high accuracy results
have been obtained in the entire range of parameter values of these potential forms, with no constraints or
adjustable constants. The present approach compares well, with existing methods, the results of which are
precisely recovered as particular cases and does allow solutions to eigenvalues problems with any combination
of potential parameters.
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[. INTRODUCTION dinger equation for two forms of the considered potential.
Once these solutions have been obtained, the corresponding
It is well known that the generalized exponential- polynomial equations will allow the determination of the se-
cosine screened Coulomb(ECSQ potential V(r) quences of energy levels for a given set of potential param-
:exp(_Mr)Cosq\r)/r be]ongs to a wide class of model po- eters, a.nd fixed .angular mO.mentumWithOUt resortin_g .tO
tentials used in different areas of physics. Theoretical invesextensive numerical calculations. Thus, the uncertainties re-
tigations of the ECSC potential have been performed throughpted to the use of approximate methods and the singularity
various numerical and analytical approaches for the determProblems are avoided. The proposed approach, which re-
nation of the energy eigenvalues and the corresponding waviires neither adjustable constants nor starting trial energy
functions [1—8]. The particular casg.=X\ of this type of value, can be extended to potentials of the same form occur-
. . . ring in nuclear physics and condensed matter.
potential has been treated by perturbation theory Witas After the Introduction, in Sec. Il, recursion relations are
o oo rived in order nstr lution he Sclinger
pargmete[1—4]. The accuracy obtained is up to the f|r§t five gguaﬁgn wi?hdtSvot?or(;r?s sotf l:ﬁ; IsEoCuStg psottgn:ia?: i?ggﬁeral-
decimals. For the same case<{\), the largeN expansion ;o4 exponential-cosine screened Coulomb potential and the
technique was applied to obtain the bound-state energy spefartially screening exponential-cosine Coulomb potential. In
trum[6,7]. A power series-Hill determinant method has beengec_ |, the present work is illustrated by calculations of the
developed by KillingbecK7] to calculate the energy eigen- gjgenenergies in a whole range of parameters values of the
values for some particular values pfand\. An adjustable  considered potential forms. Some numerical results are pre-
constant and a scaling factor have been introduced. A triadented and compared with previous computations that were
energy value is required in the calculations. Recently, Ixariperformed by other methods.
et al. [8] have presented a procedure for numerical solution
of the eigenvalues problems with the distorted Coulomb po-
tential. In that work, the partially screening exponential-
cosine(PSEQ potential is assumed to describe two regions A. The generalized exponential-cosine screened Coulomb
corresponding to two different electric charges, which are potential
located around the origin and at the asymtotic limit, respec-
tively. In this procedure the knowledge of the behavior of
V(r) is not required. However, it is well known that some
physical problems are mainly concerned by the short an

Il. SERIES SOLUTION FOR THE POTENTIALS

The radial part of the time-independent Satinger equa-
tion with ECSC potential and centrifugal term can be written
(ip the following form (atomic units are used throughgut

intermediate distancege.g., potential models for hadron 1(1+1) e Pcod kp)

physicg. Moreover, the success of direct numerical integra-  ¢"(p)+| —&2— Tt W(p)=0,
tion methods depends on the quality of initial guesses of the P p

trial eigenvalues and boundary conditions. @

In the present work, a simple approach is proposed to
determine highly accurate eigenvalues of the generalizedheree=+—2E/u, k=N u, andB=alu, E being the ei-
exponential-cosine Coulomb potentials. The series expansiagenvalue to be looked fdionly the bound states are consid-
formalism is used to derive analytical solutions to the Sehroered. Here w and \ are the usual screening parameters of
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TABLE I. Energy eigenvalues<E, in a.u), for | =0 and different values of screening parametgrs\() of ECSC potential. The number
of terms used iN=14. Only six decimals are quoted here. The underlined values, located on the first diagonal of the table, correspond to
the results obtained for the particular case \ by other method$1—7].

MAN 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2

0.01 0.490001 0.480224 0.470591 0.461100 0.451748 0.442533 0.433453 0.424504 0.415686 0.406996 0.326740
0.02 0.489781 _0.4800080.470379 0.460892 0.451544 0.442333 0.433256 0.424311 0.415496 0.406810 0.326585
0.03 0.489413 0.479648 __0.47002@.460546 0.451204 0.441999 0.432928 0.423989 0.415180 0.406499 0.326326
0.04 0.488900 0.479144 0.469532 _0.460060.450728 0.441532 0.432470 0.423539 0.414738 0.406065 0.325964
0.05 0.488240 0.478497 0.468898 0.459438 0.45010440932 0.431881 0.422961 0.414170 0.405507 0.325498
0.06 0.487436 0.477708 0.468123 0.458679 0.449372 0.440P0431162 0.422255 0.413477 0.404827 0.324929
0.07 0.486487 0.476778 0.467210 0.457783 0.448492 0.439337 0.43(B431423 0.412660 0.404023 0.324256
0.08 0.485395 0.475706 0.466159 0.456751 0.447480 0.438343 0.429338 0.420484718 0.403098 0.323480
0.09 0.484160 0.474495 0.464971 0.455585 0.446335 0.437218 0.428234 0.419380 0.4008B2%52 0.322600

0.1 0.482785 0.473145 0.463646 0.454284 0.445058 0.435965 0.427003 0.418170 0.409465 0.40838616

0.2 0.461597 0.452339 0.443211 0.434211 0.425337 0.416588 0.407962 0.399457 0.391071 0.382804 0.306375

the potential and is a constant. The ECSC potential in Eq. *
(1) can be represented as an infinite series of the form d(p)= > apX. (5)
k=0
© P . - . .
_ p-1 The expansion coefficients, and the basis functiong(p)
Vip) 2’8,320 qgo 9p-2qNaP" @ are real. Substituting the expansi@d) into Eq. (4) and

equating the terms of successive powerspofo zero, we

whereg and h are the series expansion coefficients of theobtain the following recurrence relation for the coefficients
exponential and cosine functions, respectively. The objectivén s
now is to construct an analytical solution of Ed) with the -1 p
otential form(2). This solution is sought in the form
p 2 9 (n+|)8a”_l_'8pzo QZO 9p-2qNq@n-1-q

W(p)=p%e " e(p), 3 = Nl » =1
n( |+ T
wheresis determined in such a way that the solution goes to ©6)
zero at the origin. Substituting Eq&) and (2) into Eq. (1),
we obtain So far, we have not introduced any constraint or adjustable

constant in these calculations. Finally an analytical solution

[s(s—1)—1(1+1)]p+(25¢p' —2e5¢)p+ (" —2e ') p? to the Schrdinger equation with the generalized
o p exponential-cosine screened Coulomb potential is obtained
+2'B¢pzo qgo gp—thqu+1:0a (4)
d(p)=p'tte

agt ngl anpn>, ap#0. (7)

where the variable of the function¢ is omitted for sim-

plicity. The function ¢(p) can be represented by a series The solutiony(p) is function of the angular momentuim
expansion whose coefficients will be determined by the stanthe bound-state eigenvalie (i.e., €, to be calculatedand
dard procedurésee, e.g., Ref9]) the two screening parametessand\.

TABLE II. Energy eigenvaluesga.u) versus the numbeX of terms of the polynomial equation for the
ECSC potential. The second column corresponds to the eigen\&ataie-0.490 001) displayed in Table | for
(u,\)=(0.01,0.01). The values in the last line are the results With50 of Ref.[7].

N (0.01,0.01)=0 (0.05,0)=0 (0.05,0)=1

8 —0.490000987578414 —0.45181642236646 —0.08046402435766
10 —0.490000987578416 —0.45181642843260 —0.08069564787830
13 —0.490000987578417 —0.45181642852304 —0.08073227047680
14 —0.490000987578417 —0.45181642852448 —0.08073875332339
16 —0.490000987578418 —0.45181642852449 —0.08074036232384
50 —0.45181643 —0.08074039
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TABLE lll. Energy convergencéa.u) versus the number of ternié of the polynomial equation and the
value of the variable for ECSC potential withu =0.05,\=0 andl =0. In the last column are displayed the
results of the power series—Hill determinant methatl

pAN 8 10 14 18 50
5 —0.4518164223 —0.4518164284 —0.4518164285 —0.4518164297
10 —0.4518164284 —0.4518164284 —0.4518164285 —0.4518164298 —0.45181562
15 —0.4518164284 —0.4518164285 —0.4518164285 —0.4518164298 —0.45181643
20 —0.4518164284 —0.4518164285 —0.4518164285 —0.4518164298 —0.45181643
1070 —0.4518164284 —0.4518164285 —0.4518164286 —0.4518164298 —0.45181643
B. The partially screening exponential-cosine Coulomb calculations and give only the final expression @f ob-
potential tained for the PSEC Coulomb potential
The recurrence relatiof6) and the constructed solution -1 p
(7) correspond to the well known form of the ECSC potential B
used in Refs[1-7]. In order to test the reliability of the [(n+1)e ﬂ]an—1+b7lp§0 qgo 9p-2qNq¥n-1-q
proposed approach, it is of interest to consider also the par- a,= ") ,
tially screening exponential-cosine Coulomb potential used nl 1+ —=
by Ixaru et al. [8]. This is one more motivation for the 2

present work to make comparison with the most recent avail-

able numerical results. The PSEC potential is written in the n=1. (10
following form (see Eq(5.3) in Ref.[8]):

The constructed solution is of the same form as &g. but
with a,, derived in Eq.(10).

The wave function (p) and considered potentials
strongly converge as— (p very largg. The series oven
whereZ, and Z,¢ are the charges corresponding to two as-in Eq. (7) are infinite but converge very rapidly. To avoid the
sumed regions of the potential, for small and large distancegrawbacks of the existing methods, presented in the intro-
r, respectively. By analogy with the forit2), the potential  duction, it will be adopted in the present work, an approach

V()= _ZZOV(ruUw)\)_ZZas(%_V(raﬂa)\)): )

(8) can be represented in the following expansion: based on the fact that, for large valuespaind a given set of
% p 1 parameters that describe the considered potential, the series
_ p-1_ * ¥(p) in Eq. (7) can be considered asrdh degree polyno-
V(p) 277( bpzo qzo Gp-2qNaP p)’ © mial equation ine. In general, the problems that arise when

one uses the power series expansion formalism are related to
wheren=2,s/u andb=(Z,s—Z,)/Z,s. The coefficientyy  the determination of corresponding coefficients. In the
andh are defined in Eq(2). The procedure developed above present approach, these problems are avoided due to the re-
is applied to solve the corresponding equation with @.  cursive procedure derived for the successive evaluation of
For the sake of brevity, we omit the intermediate steps othe coefficientsy,,. Knowing that for a polynomial of degree

TABLE IV. Energy eigenvaluega.u) for | =0 and different values of the screening parametgara | of
the PSEC Coulomb potential. The noted down out at the bottom of the table values correspond to the results
of Ref.[8] obtained for the particular cage=\ =0.025(all quoted figures are kept

MAN 0.023 0.024 0.025 0.026

0.024 —2497.648069565322 —2497.648000541650 —2497.647928580743 —2497.647853682713
—662.648283005093 —622.648007571868 —622.647720419181 —622.647421545352
—275.426432264287 —275.425815023098 —275.425171510940 —275.424501736108

0.025 —2497.550141591035 —2497.550072570069 —2497.550000612079 —2497.549925717022
—622.550571065078 —622.550295671433 —622.550008558081 —622.549709726477
—275.329080239292 —275.328463176982 —275.327819865708 —275.327150293829

0.026 —2497.452216553854 —2497.452147535665 —2497.452075580554  2497.452000688449
—622.452870845412 —622.452595489654 —622.452308416614 —622.542009627196
—275.231754460659 —275.231137592236 —275.230494475763 —275.229825105659

2_2497.5500006120.
b_ 622.550008557.
¢_275.327819864.
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n there are alway# (not necessary distinctroots. In the known root-polishing technique of the numerical analysis
present work the polynomial equation is solved by using §10]. The process of computation does not require any con-
computational procedure based on the well-establishedergence acceleration procedure. Table Il shows the energy
Jenkins-Traub metho@i10] which converges very rapidly. convergence with respect to the number of terms considered
The process of finding the successive roots of the polynomiah the polynomial equation and the values of the varighle
equation, i.e., the eigenvalues, can be achieved by two poser [ =0. In the last column of this table the results obtained
sible ways. The first one gives isolated roots while the in the framework of the Hill-determinant method by using 50
second provides a product of first-degree and second-degréerms are listed7]. In the present approach the first ten
polynomials (this is in accordance with the fundamental significant figures are reached by using five terms only. From
properties of the polynomial algehraThe same expected mathematical point of view, does not have to be integer.
roots are obtained in both cases with the same number dfhe eigenvalues obtained for noninteger values afe not
significant digits. This procedure permits, in a simple way, ashown in this paper. To verify the efficiency of the proposed
straightforward determination of the energy levels withoutapproach, calculations have been performed for the partially

introducing any starting value d& or bracketed root. screening exponential-cosine Coulomb potenti@)l with
screening parameterg.(\) varying from 0.023 up to 0.026,
[1l. COMPUTATIONAL RESULTS for 1=0,5 and 10. Some resultfor | =0) are presented in

Table IV with about sixteen significant figures. Comparison

Calculations have been carried out with the generalizegs made with the most recent calculations for the particular
ECSC potential for fixed values dfand screening param- caseu=A=0.025[8].

eters (u,\) varying from 0.01 to 0.2. The energy eigenval- |n'symmary, highly accurate eigenvalues for two forms of
ues obtained fot=0 are displayed in Table | where only 6 e generalized exponential-cosine Coulomb potential can be
decimals are shown. The underlined values, located on thgyiained by a relatively simple approach, based on the series
first dlaggnal of this table, correspond to the. particular Cas@xpansion formalism combined with solving of polynomial
w=\ which was treated by other methods in Réfs-7].  equations. The procedure of calculation, which can be ap-
High accuracy results, up to sixteen significant figures, havgyjied to other potentials of similar form, permits, in a simple
been obtained with a relatively low number of term¥ ( \ay, a straightforward determination of the energy eigenval-
=_14) of the_p(_)Iyn_omlaI equation. To |IIus_t_rate this precision a5 without introducing any adjustable parameter or con-
with more digits, in Table Il some specific results are pre-strajnt. Singularity problems are avoided. All results previ-
sented for the casg=A=0.01 (E=—0.490001) shown in  oysly obtained by other methods are reproduced here, as
Table I with only six digits. The casp=0.05 and\=0is  particular cases, with high accuracy. Predictions can be made
not ShOWI’l n thIS table. The resu|tS Obta|ned n the framefor different Combinations of potentia' parameters' The ad_

Table 1)) require a number ranging from 20 to 50 terf@$.  accuracy.

On the other hand, we can notice from Table Il, that the

accuracy incre.ases with incrgasing_ of number o_f terms, i.e., ACKNOWLEDGMENTS
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